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Calculating dynamic structure factors with the real space 
renormalisation group 

A C Maggst and R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 31 October 1985 

Abstract. This paper develops exact methods, based on the real space renormalisation 
group, for calculating dynamic structure factors of Heisenberg ferromagnets. The method 
is applied to  a pure chain, a Sierpinski gasket and a quasi-one-dimensional model of a 
dilute chain. The result for the Sierpinski gasket exhibits a rich structure because of the 
requirement of discrete scale invariance. 

By the use of distribution scaling the method is generalised to treat a randomly diluted 
chain. 

1. Introduction 

In recent years much interest has been shown in the anomalous dynamics of systems 
close to dilution-induced critical points, such as those occurring in dilute magnets 
close to the percolation threshold. In this paper we shall concentrate on the linear 
dynamics of systems with a Goldstone symmetry, such as the dilute Heisenberg 
ferromagnet. Analogous anomalous effects occur in other systems and have also been 
widely considered (Alexander and Orbach 1982, Rammal and Toulouse 1982). Recent 
reviews can be found by Aharony (1985) and Orbach (1985). 

It is expected that, close to a dilution-induced critical point, the Green functions 
(and hence the correlation functions) take on the following homogeneous form (Hal- 
perin and Hohenberg 1969): 

G ( k ,  U, 5 )  = m; s a w  (1.1) 

F(Ulk' ,  e) (1 -2) - - k(2-1+2) 

where 5 is the static percolative correlation length. From G( k, U )  we find the dynamic 
structure factor, S (  k, w, t), which can be observed in scattering experiments: 

S (  k, U ,  5 )  = lim Im G( k, w - ie, 5). 
E'O 

(1.3) 

The form (1.2) has been confirmed in one dimension by Stinchcombe and Hams 
(1983) and Maggs and Stinchcombe (1984) who calculated the function F ( u /  k", e) 
in closed form for a dilute ferromagnetic and antiferromagnetic chain respectively. In 
more than one dimension the methods used in those papers cannot be used. For small 
amounts of dilution it is possible to use classical effective medium theories (Tahir-Kheli 
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1972, Elliott and Pepper 1973, Entin-Wohlman et af 1983, Derrida et af 1984). Lewis 
and Stinchcombe (1984) considered the density of states of a dilute Heisenberg 
ferromagnet at the percolation threshold, where 6 = 03, by a numerical study of the 
interaction matrices of large randomly generated clusters. 

To deal with the scaling aspects of critical dynamics at the percolation threshold, 
in one and more dimensions, workers have been led to consider the application of 
real space methods to the dynamics of random media. For general reviews see 
Stinchcombe (1983b, c, 1985). These methods have been applied to random systems 
by a number of workers. Stinchcombe (1983a) and Stinchcombe and Hams (1983) 
consider a randomly diluted chain. The methods were applied to a two-dimensional 
hexagonal lattice at the percolation threshold by Harris and Stinchcombe (1983). Here, 
the standard bond moving and moment averaging methods used in the theory of dilute 
magnetism (Stinchcombe 1983b) were adapted to treat random equations of motion 
and find the scaling form and the exponent z. 

Real space methods have been applied to a random binary alloy by GonGalves da 
Silva and Koiller (1981) who produced a procedure for calculating the density of states 
by a partial averaging over the disorder in the equations of motion. The results have 
since been re-derived and extended by Robbins and Koiller (1983) so that a partial 
average is performed over the t matrices; this was found to increase the number of 
moments of the density of states that are preserved from five, in the original approxima- 
tion, to seven. The method is also capable of dealing with Markovian short range 
order. Similar methods have also been used for a disordered ferromagnet (Chaves 
and Koiller 1983). The success of the original approximation in ensuring a positive 
definite density of states has been shown to lie in the fact that the method can be 
regarded as an exact recursive solution for the density of states of a Berker lattice with 
an inhomogeneous distribution of masses (Langlois et a1 1983). 

Real space methods are ideally suited to finding the exact solution of self-similar 
or fractal models. Fractals (Mandelbrot 1977) have been of interest to physicists since 
they can be constructed to model relevant features of random systems. For dilute 
lattices at the percolation threshold the important characteristics are thought to be 
statistical self-similarity and a highly ramified structure. 

One of the most popular models has been the Sierpinski gasket upon which both 
thermodynamics and dynamics have been considered. The papers of Harris and 
Stinchcombe (1983) and Domany et af (1983) considered the dynamics of a Heisenberg 
spin system on the Sierpinski gasket and used methods based on scaling the equations 
of motion of the spins. Domany et af (1983) showed that it is possible to find the 
density of states by considering the quadratic map 

(1.4) 2 w 1 = 5 w - 0 .  

They also considered the nature of eigenstates on the gasket and concluded that, 
rather than being extended, as is usual on Euclidean lattices, they are rather local 
molecular modes which do not necessarily extend throughout the whole lattice. Using 
the equation of motion method Harris and Stinchcombe (1983) also considered the 
scaling of Green functions on the gasket. 

Tremblay and Southern (1983) produced another method of calculating the density 
of states of the Sierpinski gasket by introducing a Gaussian generating function for 
the density of states. From this generating function they derived an inhomogeneous 
functional equation. The method has much in common with real space calculations 
of the specific heats of magnets (Niemeijer and van Leeuwen 1976). By iterating the 
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functional equation in the complex plane, and by giving 6.1 a small imaginary part, the 
full density of states was found. The advantage of this method over the method of 
Domany er a1 (1983) is that it is no longer necessary to treat some frequencies as 
special cases: the singularities which arise in the application of (1.4) are smoothed out 
by the finite imaginary part of w. 

Southern and Douchant (1985) have also applied this method to a series of identical 
Sierpinski gaskets embedded in a triangular lattice. This system is proposed to model 
a dilute two-dimensional lattice close to p c .  By changing the generation of the gaskets 
which are inserted into the triangular lattice it is possible to change the effective 
correlation length. If we believe the dynamic scaling hypothesis, the side of the gasket, 
measured in units of the smallest triangle present, should be the only relevant length 
for low frequency dynamics. Surprisingly they found that, rather than there being an 
extended band at low energies with a crossover to localised states at higher energies, 
when anomalous dispersion sets in, there is instead an alternation of narrow extended 
bands and localised modes throughout the whole energy range of excitations. A finite 
fraction of the modes always remains extended no matter how large the correlation 
length becomes. Whether these high energy extended states are an artefact of the 
periodic array of gaskets or are instead also present in random systems is not known. 
It may be that in a random cluster the energies of these high energy pass bands vary 
sufficiently for there to be a mismatch between neighbouring regions, so that only the 
lowest band (which is constrained by the Goldstone symmetry) remains extended. 

This paper considers the generalisation of these methods so that they can be used 
to calculate the full response function of Heisenberg ferromagnets at zero temperature. 
The methods developed are applied to a pure chain, where the exact solution is 
recovered, a Sierpinski gasket and a quasi-one-dimensional model consisting of a linear 
backbone decorated with side chains. This last system has been designed to model 
some of the properties of a dilute ferromagnetic chain near the percolation threshold, 
and yet avoid the difficulties associated with making arbitrary truncations to recursion 
formulae. 

It would also be useful to have a method of calculating G( k, w )  for random systems 
with real space methods which could be applied for p close to p c .  This would 
complement the results of effective medium calculations which are only reliable near 
the pure limit. For any random system one would expect to make approximations to 
the true renormalised coupling distributions, both to limit the range of interactions 
and to remove correlations which develop in the couplings in the process of renormalisa- 
tion. Unfortunately we have been unable to find any completely acceptable approxima- 
tions to the general problem of Heisenberg dynamic response on a dilute d-dimensional 
lattice. The major difficulty encountered in making any approximation is discussed 
later in 9 7 when we consider the convergence of an exact recursion formula for the 
Green functions of a ferromagnetic chain. 

Finally we calculate the response of a chain segment of 2 p  bonds which leads us 
to an exact treatment of the randomly diluted chain by the use of distribution scaling. 

2. The Gaussian generating function 

Consider a Heisenberg spin system on an arbitrary lattice. Then the equations of 
motion of the Green functions 

G, = ((S:; SJ) (2 .1)  
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can be found by the usual method of commutation with the Hamiltonian. They are 
as follows: 

(2 JiI - U )  G, = JiIGV + 6, I 

I I 

It is convenient to write these equations in matrix form as 

HG=I  (2.3) 

where 

H , , = C  J,I - W  H U = JIJ (2.4) 
I 

We now see that the Green functions G, are given by the inverse of the matrix, 
H. We shall now use a recursive method of calculating this inverse by introducing a 
Gaussian generating function. 

We define the ‘free energy’ F { h }  by 

F { h ) = l n  exp[(i/2)(SHS+2h. S ) ] n  dS,. (2.5) 

(2.6) 

J I 

The action in the exponential is an abbreviation for 

C JU( S, - 

F‘{ h }  = - ii 1 h,GZJhJ +constant 

- w C Sf + 2 C h,S,. 
(11) I I 

As is easily seen from completing the square in the exponential 

(2.7) 
I ]  

where the matrix G is again the inverse of the matrix H defined by (2.4), which is the 
matrix of the symmetric quadratic form occurring in the action (2.6). The individual 
elements of G are found by differentiating with respect to the transverse magnetic 
fields, h :  

a’ 
G, = i - F {  h } .  

ah,ahj 

The advantage of introducing a Gaussian generating function is that the analogy 
between the dynamics of Heisenberg magnets and thermodynamics becomes much 
clearer. We shall now use (2.8) to derive some formal results for the renormalisation 
of parameters occurring in an  arbitrary action of the form (2.6). To d o  this we split 
the action into two parts corresponding to two sublattices. The sites which are to 
remain after a single renormalisation has been performed are assigned to the sublattice 
labelled ‘1’. The remaining sites, which are to be integrated over, form the ‘2’  sublattice. 
The action can be rewritten in terms of the sublattice variables and the matrices that 
connect them as follows: 

S H S  + 2hS  = SI H 1 1  SI + SI H,zS2 + SZHZIS2 + S,HZ,S, + hl SI + h,S,. (2.9) 
The integration over the ‘2’ sublattice is performed by completing the square, giving 

the following equations for the scaling of the effective interactions and fields of the 
remaining variables: 

H‘= HI1 -H12H;iH21 

h ’ = h l - ~ 1 2 ~ ; ; h 2 .  

(2.10) 

(2.11) 
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In general, it is possible to add an arbitrary constant to the action (2.6), which 
does not couple to the spins. This term, C, will scale so as to conserve the absolute 
value of the free energy, F{ h } ,  after each decimation. Its scaling under renormalisation 
is given by 

C’ = C - h,H;ih, + K .  (2.12) 

The constant, K ,  is independent of the fields, h, and is proportional to the logarithm 
of the determinant which arises from the integration over the ‘2’ sublattice. 

The results (2.10) and  (2.11) are entirely equivalent to those obtained from scaling 
the equations of motion, but there is no analogy in the equation of motion method 
for (2.12); the same equations are implied for any value of the constant, C. 

Let us now apply these results to the specific cases mentioned above: the pure 
ferromagnetic chain, the Sierpinski gasket and  the sidechain model. 

3. The one-dimensional ferromagnet 

To illustrate the method with a simple example we consider a Heisenberg ferromagnet 
on a chain of L sites in the limit k L + a  where the boundary conditions can be 
neglected. The initial action, taking unit exchange coupling J, is 

(vi) I 

After decimating the action (3.1) by integrating over the variables on alternate sites 
(so that the length dilatation factor is b = 2), we find with the help of equations 
(2.10)-(2.12) that the renormalised action is 

If we were considering the equations of motion of the Green functions we would 
be justified in multiplying throughout by (2-0.1); in this formulation, in terms of a 
generating function, this is not possible. Instead we make a change of variables in the 
integration to find a scaled action in which the coefficient of S,S,+, is unity (as it was 
in the undecimated system). Thus the final form for the renormalised action after 
rescaling is 

The final recursion relations for w and hi can be read off from (3.3) and are as 
follows: 

(3.4) 

Let us now turn to the inhomogeneous or  constant term, C, in the action and  the 
contribution it makes at each stage to the Green functions. Since we shall eventually 
be interested in the derivatives of F {  h }  with respect to the fields { h } ,  rather than the 
absolute value of F {  h } ,  there is no need to keep track of the Jacobian of the transforma- 
tion nor the determinant arising from the integration over the ‘2’ sublattice; both of 
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these contribute to C but are independent of {h}. From (2.8) we see that 

(3.5) 
1 

G( k, w ) = - 
L r r '  

exp[i k (  r - r')] G,,( w ) 

iF{h} 
1 a2 

= - C exp[ik( r - r')] - L rr' ahrahr, 

To calculate this derivative consider the contribution of the constant term to G( k, w )  
from the nth decimation. From (2.12) this is equal to 

where {h""} signifies the effective fields acting on the sites which remain after the nth 
decimation has been performed. 

Using (3.4) n times, it is possible to write the effective field acting on any site, at 
a position r, as a linear combination of the fields acting on the original zeroth generation 
chain. We write the result as 

3.9) 

Decomposing {h ' " }  into its Fourier components and substituting into (3.8) gives 

mm 
49' 

(3.10) 

For the one-dimensional chain, where the inverse of H2' is diagonal and where 
there is an inversion symmetry so that - k  is equivalent to k, (3.10) simplifies to give 

(3.11) 
-2-" 

- - 

The Green function, G(k,  w ) ,  is found by summing Z'") over n:  
5 

G(k ,  w )  = 1'"' 
n = l  

(3.12) 



Dynamic response by real space renormalisation 2643 

The sum within the parentheses of (3.1 1) can be calculated recursively from equation 
(3.4),  for it is just the renormalised field amplitude that would be found acting on the 
site r after ( n  - I )  iterations if the field acting on the original chain were periodic with 
wavevector k, and were of unit amplitude. 

Thus denoting the field amplitude after the nth decimation by h p ) ,  we find from 
(3.4) that 

(3 .13)  

where on the left we write h 2 k  rather than h k  because it is convenient to measure all 
lengths in units of the renormalised lattice spacing. 

As stated above, the initial condition for the iteration is h k  = 1. Assembling the 
above arguments we find that the 1'") as defined above (and their sum) are generated 
by iterating the following inhomogeneous functional equation: 

( 2  - w +2 cos k ) 2  
2(2  - w )  

1 
G( k, w )  = G ( 2 k ,  4w - U ' )  -- 

2(2  - U ) '  
(3 .14)  

The solution to this equation is well known and is easily checked to be 

(3.15) 
1 

w - 2( 1 -COS k ) '  G ( S  0) = 

The functional equation (3.14) can also be iterated numerically in the complex 
plane by giving w a small imaginary part, which acts as a convergence factor by 
smoothing out the singularities in (3.14) coming from the pole at w = 2. The convergence 
of this map to the exact solution for the infinite chain is discussed later when we 
consider a finite chain segment which only requires a finite number of iterations of 
equation (3.14).  We note here that an additional map is also needed for the spins at 
the end of a segment if the boundary conditions are to be treated correctly. In the 
next section we apply the above procedure to derive a set of exact recursion relations 
for the response of a Sierpinski gasket which, unlike the trivial system used in the 
illustration, cannot be treated by simpler methods. 

4. The functional method for a Sierpinski gasket 

The Sierpinski gasket is a useful idealisation of the backbones of the large and infinite 
clusters in a dilute two-dimensional lattice at the percolation threshold, and has been 
considered in conjunction with a large number of models. In this section we show 
how the exact functional form of G( k, w )  can be found using a method similar to that 
described above for the one-dimensional chain. The only complications for the gasket 
are firstly that the system does not have inversion symmetry, and secondly that there 
are three inequivalent sets of sites for each of which we need independent scaling 
relations to find the magnetic field amplitudes. 

Consider the cluster of figure 1, embedded in a Sierpinski gasket of N sites. If we 
consider the spin So then we can find its couplings in the renormalised action by 
eliminating the variables on the smallest triangles (i.e. the sites labelled 5-10). If, as 
usual, a unit of energy is chosen so that the lowest level bonds are of unit strength, 
then, after a single decimation, the diagonal term, the bond strength (e.g. Joz)  and the 
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2 4 

1 5 0 a 3 

Figure 1. The cluster from a Sierpinski gasket which is used to find the recursion relations 
of § 4. 

renormalised field are as follows: 

4(4- U )  4 - U ' =  4 - w - 
( 2 -  0 ) ( 5 +  U )  

(4.1) 

As in the case of the chain a change of variables in the integration can then be 
made to find the basic scaling relations for the Sierpinski gasket: 

w I  = 5w - w 2  (4.4) 

J ' =  1 (4.5) 

The equations (4.4)-(4.6) are now in a form where they can be used iteratively. 
Let us consider the contribution of the constant term, C, to G(k, w ) .  At the nth 

iteration we find from (3.8) that 

(4.7) 
mm' 

where N is the number of sites in the original gasket. 
Because the matrix HZ2 is no longer diagonal (though it does remain block diagonal), 

and because k is not equivalent to -k, the simplifications leading to (3.11) are not 
possible for the gasket. Instead, defining the object 

(4.8) 

allows us to rewrite (4.7) as 

The RI, will be recognised as the field amplitudes associated with the site r at the 
nth generation given that the zeroth generation gasket was subjected to a field periodic 
with wavevector k and of unit amplitude. We are thus led to consider the recursion 
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relations for the Fourier components of the field. Because the direction of the wave- 
vector k breaks the discrete rotational symmetry of the gasket there are three 
inequivalent sets of positions for each of which there is an independent field scaling 
relation (see figure 2) .  It is also to be noted that there is no simple relationship between 
R k i r  and R - k : r  except on the original gasket when they are complex conjugates. 

Let us denote the field amplitudes acting upon each of the three sublattices by 
h,(k), hb(k) and h,(k). By this we mean that the effective field acting on the site at 
position r belonging to the ith sublattice at the nth stage of iteration is 

(4.10) 

Because distances (and thus wavevectors) will always be measured in terms of the 
side of the smallest triangle of the gasket, the mapping of k implied by a renormalisation 
is 

k '= 2k. (4.11) 

If we look at the cluster in figure 1 and assume that the site 0 belongs to the a 
sublattice, and if the angle that k makes with respect to the line connecting sites 1 and 
3 is 8 we find that 

h, = hj"'(k) exp(ik. r ) .  

h o =  h, 

h5 = h, exp(-ik cos 0 )  

h8 = h, exp(ik cos 6 )  

h, = hb exp[ik cOS(f3 - .rr/3)1 

h6= hb exp[ikJ3 cos(6 - 5.rr/6)] 

h, = h, exp[ik cos( 6 - 2 ~ / 3 ) ]  

h,,, = h, exp[ikJ3 cos( f3 - .rr/6)]. 

(4.12) 

On substituting (4.12) into (4.6) we find the renormalised amplitude on sublattice 
a after a single iteration in terms of the amplitudes of the previous generation. 

Figure 2. The three inequivalent sublattices which must be considered for the field scaling 
on a Sierpinski gasket. 
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The recursion relations for any other sublattice are obtained by rotation by multiples 

with a + b, b + c, c -* a (4.13) 
Of 2 ~ 1 3 .  Thus, for h b  

e-. 0 + 2 ~ / 3  

and for h, 

o +  e+4.rr/3 with a + c, b -* a, c + b. (4.14) 

We are now in a position to give the recursive method of calculating G(k, w )  in the 
limit N + CO. 

(i)  Set all the field amplitudes hi(k), h,(-k) equal to unity. 
(ii) Decimate to obtain the renormalised parameters using (4.4), (4.6) and (4.12), 

(iii) calculate the contribution to G by the use of (4.9) which, when explicitly 
and at the same time 

written out, is equal to 
ha( k )  exp( -ikra) 3 - w 1 

1'") = -2 X 3-" h b (  k )  exp( -ikrb) [ hc(k)exp(-ikrc)][ 'iw 3!w] 

1 
h,(-k) exp(ikr,) 

h,(-k) exp(ikr,) 
(2-w)(5-0) '  

(iv) Iterate by returning to step (ii) .  
(v) Finally we find G(k, o) from I ( " ) :  

G(k, w )  = I ( " ) .  
n = l  

(4.15) 

(4.16) 

5. Discussion of results for the gasket 

Using the method described above, G( k, w )  has been calculated for various k and e. 
The results are plotted in figures 3-5. For small k and w the results display discrete 
scaling so that 

G(k, w )  = SmG(2"'k, 5"w) (5.1) 
for integral m. This implies that we can write the scaling function as a general periodic 
function of log, JkJ, i.e. 

with z = log, 5 and r] = 2. 
For a random scale-invariant system, such as the infinite cluster at the percolation 

threshold, the existence of two renormalisation group transformations with an irrational 
ratio of In b, to In 6, implies that only Go is non-zero; the system then scales in the 
conventional manner. For a non-random system, such as the Sierpinski gasket, such 
a pair of renormalisation group transformations does not exist and the G,,, are not 
subject to any constraint. In figure 3 we show a surface plot of the function 
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Figure 3. Surface plots of the function k'z-"+'' Im G(k,  w )  for a Sierpinski gasket as a 
function of log, Ikl and w /  k'. The x axis corresponds to w /  k" for 0 5 w /  k' c 2 and the I' 

axis to log, Ikl. The result is periodic with period one in log, Ikl. Each graph covers a half 
period of the complete discrete scaling function. Thus (a)  and (c )  correspond to 0.05 C k s 
O.OSJ2 and are two different views of the same surface. ( b )  and (d)  are for O.OSJ2 5 k S 0.1 
and are again the same surface from two viewpoints. For all these surfaces 0 = 0. 
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Figure 3. (continued) 
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Figure 4. Surface plots of Im G(k,  o) for a Sierpinski gasket as a function of 0 and o/k'. 
The x axis corresponds to o/ k' for 0 G o/ k' 6 2 and the y axis 0 for 0 6  0 6 60". Ikl= 0.07. 
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Figure 5. Plots of the dynamic structure factor, Im(G(k, w ) ) ,  of a Sierpinski gasket (as a 
function of U ) ,  for lkl=2.0 and with 6 values of ( a )  0", ( b )  lo", ( c )  20" and (d)  30" 
respectively. The finite width of the peaks is due to the finite imaginary part given to W .  

The kertical scale is arbitrary but consistent between plots. 

0 

0 -1 0 1 0 
Figure 6. An unnormalised wavefunction for a Sierpinski gasket for w = 5. There will be 
no scattering from this eigenstate for 6 = 30" because of the action of a selection rule (I 5). 
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Ikl(2-"+z' Im G(k, w )  plotted against log, Ikl and w/k '  in the limit of small Ikl and 0, 

for O s w / l k l ' s 2  and with 8=0. 
All the figures have been calculated by giving w a finite imaginary part which gives 

all the peaks their width. In the limit of the imaginary part of w going to zero the 
response becomes a sum of delta functions as a consequence of the fact that the support 
of the spectrum forms a Cantor set, as was shown by Domany et a1 (1983). This is 
rather different from what is expected on a randomly diluted lattice where local 
fluctuations produce a much less singular functional form. Thus the result derived 
above cannot be expected to be a reliable guide to the dynamic structure factor of 
random clusters. 

It is interesting to note that there is a strong angular dependence to the structure 
factor which has a sixfold symmetry. To show this we have calculated Im G(k, w )  for 
constant Ikl but for different 8. The results are plotted in figure 4 with Ikl= 0.07 and 
forOs8<60" .  

For certain angles selection rules can act to completely eliminate any response 
from certain modes. An example is provided by figure 5 which was calculated for 
Ikl= 2.0 and varying 8. At 8 = 30" (figure 5 ( d ) )  the response from the modes at w = 5 
vanishes. This can be understood by writing the Green function in the following way: 

The dynamic structure factor, which is found from the imaginary part of G, is 
equal to 

The contribution to the intensity from a particular mode, labelled by m, is thus given 
by l(kl m)I2. In figure 6 we show an unnormalised eigenfunction corresponding to 
w = 5. It is easy to see that for 6 = 30" this matrix element must vanish. 

Let us now turn to a model for a dilute chain rather than a dilute two-dimensional 
lattice. 

6. A quasi-one-dimensional model of a dilute chain 

In this section we model the effects of dilution on a one-dimensional chain by 
introducing a quasi-one-dimensional system in which there is a length analogous to 
the percolative correlation length of random systems. Within this length the system 
behaves like a pure chain but for large separations the propagation of waves is hindered 
so that the system can mimic the breaking of a pure chain into finite segments. The 
model chosen is one with a hierarchical construction. Figure 7 shows the construction 
of the basic lattice with a correlation length of unity. To create a system with a longer 
correlation length each bond of the unit correlation length system should be replaced 
by a chain of length 5. Because of the method of construction the sidechains have a 
distribution of lengths (so that Bloch's theorem cannot be applied) and act as scatterers. 
Their separation introduces a natural length for the decay of correlations on the 
one-dimensional backbone. For simplicity this distance will be taken to be 2p, where 
p is integral. The effect of sidechains of uniform length has been considered by Ziman 
(1979). 
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Figure 7. Construction of the quasi-one-dimensional sidechain model of unit correlation 
length. To form a model of arbitrary correlation length, 6, each bond should be replaced 
by a 6 bond segment. 

By reversing the process of construction it turns out that the Green functions of 
the model can be calculated using decimation. Since the main interest of this model 
is in the Green functions along the backbone, the magnetic fields introduced will only 
act on these sites. It is equally easy to introduce fields acting on all sites but as this 
case is of less interest the calculation will not be given here. 

The Green functions of the system are calculated in two similar but distinct stages. 
Firstly the system is decimated until the correlation length (or separation between 
neighbouring sidechains) is unity. For the second stage it is necessary to solve 
recursively for the response of the unit correlation length system. 

There are four different forms of equations of motion depending on where a spin 
is situated in the system. 

(i)  A spin in the interior of a sidechain which has two nearest neighbours: 

( 2 - w ) S ,  = c s,. 
N N t o i  

(ii) A spin at the end of a sidechain with one nearest neighbour: 

(l-(Y)sI=s&l. (6 .2 )  

(iii) A spin in the interior of the backbone when 5 is still greater than one: 

( 2 - w ) S r =  c Sr.+hr.  
“ t o r  

(iv) A spin S, at the intersection of one of the sidechains and the backbone. These 
spins have three nearest neighbours, two (S , , , ,  S , - , )  on the backbone and one ( S , )  
on the sidechain. When the correlation length has been reduced to unity it is not possible 
to rescale the equations so that all bonds remain of unit strength. Thus we introduce 
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J, as the bond strength (starting at an intersection) between spins on the backbone: 

( 3 - P ) S p =  Jm(Sp-l+Sp+l)+St+hp. (6.4) 

With these equations of motion we now form an action as has been described above. 
For a correlation length greater than one we decimate out alternate spins on both 

the sidechains and the backbone. The sublattice which is eliminated is always chosen 
so that the sites at the intersection of the sidechains and backbone remain undecimated. 
The recursion relations for the parameters in the action (after rescaling) are 

w )  = 4w - w 2  (6.5) 

f f ' =  20  -k w - f f w  ( 6 . 6 )  

p'  = 2 p  + 3w - PW (6.7) 

J A = 1  (6.8) 

) h k .  (6.9) 
2 - w + 2  COS k 

h ; k  = (2 - 

For the first p decimations the contribution to G(k ,  w )  comes from sites on the 
interior of the chain segments. Thus, I ( " )  for the first p decimations is the same as 
found for the pure chain above. 

When the correlation length has become equal to unity the method of solution 
must change. We solve for the response of the unit correlation length system by 
reversing the process of construction in figure 7 .  The new recursion relations are 

a'= 4 w  - U 2  (6.10) 

f f '  = 2 a  + w - ffw (6.11) 

2(2-0)(1 -a)J,,, 
(1 - a) (3  - P )  - 1 

p ' =  3w + 2 P  + -2 

J:, = 
2 ( 2 - ~ ) ( l - ( ~ ) J ;  
(1 - a ) ( 3  - P )  - 1 

) h k .  
2coskJ , ( l - a )  
(1 - a ) (3  - p )  - 1 

The contribution made to the Green function from each decimation is now 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

A computer program has been written to iterate these (exact) equations. The 
dynamic structure factor has been calculated for various 6 and is plotted in figure 8. 

The results for the model can never be regarded as a good approximation to the 
exact analytic result for the dilute chain (Stinchcombe and Harris 1983). However, 
they do show a similar crossover between two regimes. For small & the response 
comes from a broad range of frequencies, but the model gives a result with far more 
structure than is present in the dilute chain. When k6 increases there is a spin wave 
peak because of the long pure chains present, with some additional structure around 
the peak. 

Let us now turn to a solution of the dilute chain using distribution scaling. 
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7. Application of real space methods to random systems 

In the last part of this paper we consider the calculation of the dynamic structure 
factor of random systems using real space methods. It has proved difficult to make 
the same kind of crude bond moving and moment averaging approximations to 
functional recursion relations that have been used to describe the thermodynamics of 
pure and dilute systems within the framework of the real space renormalisation group 
(Niemeijer and van Leeuwen 1976, Jayaprakash et a l l978 or for a review Stinchcombe 
1983b); instead it is necessary to follow the evolution of the full distribution of 
parameters. 

To see the main difficulty in finding approximate functional recursion relations for 
the response of random systems let us consider figure 9. This shows plots of the 
dynamic structure factor calculated from a finite number of iterations of (3.14). In 
the limit of the number of iterations becoming large, the results converge to the exact 
result for the response of an infinite one-dimensional chain. Unfortunately the conver- 
gence is not monotone. For each w there can be contributions of either sign to the 
response even though the final result must be positive. The side modes which are 
visible after the first few iterations are erased by later negative contributions and are 
thus moved in towards the main spin wave peak; note that the width of the peaks in 
these plots is due solely to the imaginary part of w and is not an effect of impurity 
broadening. These side responses are certainly physical in that they are a consequence 
of the breakdown of the normal bulk selection rules which only hold in the limit of 
an infinite system. The presence of these features after a finite number of iterations 
of the map corresponds to natural finite-size effects. The aim of any recursive method 
is the iterative solution of successively larger finite-size systems and any such method 
would therefore be expected to share the property of non-monotone convergence to 
the infinite system limit. The difficulty in making any approximation for the response 
is now clear. In general, any such approximation will result in the subtractions which 
originally cancelled the side modes occurring at frequencies slightly different from the 
frequency of the original peaks. This is sufficient to destroy the herglotz property of 
the Green function: the imaginary part of the Green function will oscillate in sign and 
will be of no use as an approximation for neutron scattering lineshapes. These 
difficulties do not appear in the usual recursion relations for thermodynamic quantities 
because in thermodynamic systems one averages over a large number of modes. The 
analytic properties of quantities such as the free energy are thus tested much less 
severely (though approximate real space methods have been used successfully in a 
calculation of the Yang-Lee zeros of the non-random two-dimensional Ising model 
by Derrida and Flyvbjerg (1985)). 

8. The dilute chain 

We shall show that in principle it is possible to find an exact scaling method for the 
response of a dilute one-dimensional ferromagnet using decimation based techniques, 
rather than the methods of Stinchcombe and Harris (1983) and Maggs and Stinchcombe 
(1984) from which the exact scaling function is already known. In this paper this new 
technique will not be used to perform any numerical calculations, but a number of 
calculations are planned for the near future. The method will involve following the 
evolution of the distributions of parameters in the part of the action corresponding to 
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Figure 9. Plots of successive iterates of (3.14) illustrating the non-monotone convergence 
to the pure limit. For all these graphs k = 0.1. The width to the peaks comes from the 
imaginary part of w. The number of iterations are ( a )  5 ,  ( b )  6 ,  ( c )  7, ( d )  8, ( e )  9, (f) 10, 
(g) 11, ( h )  12. 
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Figure 9. (continued) 

the end spins of chain segments. Such distributions are much more difficult to treat 
than the simple parameter scalings considered until now, so before giving the method 
for the fully random case it is convenient to consider the calculation of the response 
of a single chain segment of 2p  bonds. The solution of this problem is similar to the 
full solution of the dilute chain but is without the complications of the full ensemble 
of segment lengths. 

For such a segment of 2 p  bonds it is possible to use decimation to eliminate all 
but the last two sites by following the evolution of the equations of motion of spins 
both in the interior and at the ends of the chain. The calculation is terminated by 
solving for the contribution from the last two sites. This contribution is always important 
in the scaling limit because the boundary conditions of the chain determine the lowest 
frequency present on a segment. For the limit k$+co, boundary conditions are not 
important, which is why the response of a long chain is well approximated by a large 
number of iterations of (3.14). 

For the interior sites of a 2 p  bond segment (with p > 1) the equations of motion are 

(8.1) (2 - @ ) S t  = s;+, + $-I+ h:. 

( 1  - a)So+ = s:+ ho+. 

For the leftmost spin on the segment the corresponding equation is 

(8.2) 

A similar equation holds for the spin on the rightmost site of the segment. The 
equation for the end sites contains a rather than w so that the set of equations closes 
under renormalisation. From these equations we form an action as described above, 
from which G( k, w )  can be calculated. Because there are a finite number of sites, only 
a finite number of stages are needed to find the exact solution for the response. 

Integrating over the odd numbered sites (counting the leftmost spin of a segment 
as zero) and then rescaling the integration variables so that the strength of the 
renormalised bonds is unity implies the following recursion formulae for w and a and 
for h', h', h' (which are the field amplitudes for the interior, the leftmost and the right- 
most spins respectively on a renormalised segment): 

w ' = 4 w - w 2  (8.3) 
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a'= 2 a  + w  - a w  ( 8 . 4 )  

) h l  
2 - w + 2  COS k 

w ) h :  + eikh:  

w ) h + e& kh l )  
h;; = ( ( 2  - ( 2 - w ) 1 / 2  (8 .7)  

For later reference when considering the fully random case let us introduce the 
following notation for the evolution of the end conditions according to equations ( 8 . 4 ) ,  
(8 .6)  and ( 8 . 7 ) :  

hi: = F,(k ,  w, a, h:)  

h;; = F, (k ,  U ,  a, h i )  

a'= G l ( w ,  a ) .  

(8.8) 

Integrating over odd numbered sites of the segment implies that the contribution 
to the inhomogeneous term from the first ( p  - 1 )  iterations comes only from the interior 
sites; is identical to the 1'") which would be calculated for the infinite chain when 
n < p  - 1 and can be found by iterating (3 .14) .  After the ( p  - 1)th decimation the 
renormalised system consists of just a pair of coupled degrees of freedom. The final 
contribution which contains all the information on boundary conditions comes from 
treating this pair as a special case and integrating over the last two variables remaining 
in the action. Thus 

P 

G ( k ,  U )  = 1'"' (8.9) 
n = l  

where 1'") for n S p  - 1 is given by the iterates of (3 .14)  and 

(8 .10)  

and we have used the fact that h: = h r k .  
Let us now turn to the fully random case. Here it is necessary to follow both the 

deterministic evolution of the couplings of interior sites using ( 8 . 3 )  and (8.5) and a 
probability distribution for the evolution of the end conditions. The end conditions 
evolve into a distribution because when the decimation is performed, either a site on 
the very end of a segment, or a site one lattice spacing in from the end, can be on the 
surviving sublattice. In the first case the renormalised parameters in the new boundary 
conditions are given by (8.4), (8 .6)  and ( 8 . 7 ) .  In the second case the scaling of the 
parameters is as follows: 

(8.11) 

(8 .12)  

(8 .13)  
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For scaling according to equations (8.1 1)-(8.13) the following notation will be used: 

h k  = FAk, 0, a, h : )  

h;; = F 2 ( S  o, CY, h i ) .  (8.14) 

a'= G ~ ( w ,  CY). 

We are now in a position to write down the equations for the evolution of end conditions 
of an arbitrary segment. 

These equations are only valid for segments sufficiently long that the evolution of 
the right and left ends of the chain is independent. To ensure this is so we shall only 
apply them to segments of at least three bonds. All shorter segments must be dealt 
with individually as a special case, as was done for the last pair of sites in the segment 
of length 2p. Thus we find the evolution of the joint probability distribution, D, is 

D((Y', h&, h l / 2 k ) =  -dh: dh'_kD(CY, h:, h k k )  Id: 
X { 6 [ a r -  G , ( o ,  a ) ] 6 [ h S : - F , ( k ,  0, a, h:)]6[h!!,,-F,(-k, U, CY, h i k ) ]  

+a[a'-Gz(w, a)16[h;:-Fz(S 0, a, h:)]S[h!,k-F2(-k, U, a, ht , )]} .  
(8.15) 

We now give the exact recursive method of calculating the Green function for 

(1) Set a equal to w and hk equal to unity as the initial conditions. 
(2) Eliminate all the smallest segments with less than three bonds exactly. The 

results for the scalings given above assume that the segments are sufficiently long for 
the left and right end evolutions to be independent. 

(3a)  Decimate to find the contribution made to G ( k ,  U ) .  The interior sites of all 
chains longer than two bonds contribute the following: 

arbitrary p ,  k and o. 

2-"p2[1-(l-p)2]- (hk)2 
(2 - w ) '  

(8.16) 

( 3 6 )  The number of sites on the left of a segment is p3( l  - p )  and the number of 

For a segment of more than two bonds the contribution from the left end is 
sites on the right of a segment is also p 3 (  1 - p ) .  

h:h!k 
( 1 - a )  

so that the total contribution from end sites (both left and right) is 

(8,17) 

(8.18) 

(4) The decimation which has been performed implies new values for the para- 
meters in the action. Those for the interior are given by (8.3) and (8.5) while the new 
probability distribution of boundary conditions is given by (8.15). The renormalised 
bond concentration is p'  = p2. 
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( 5 )  Before performing the next decimation it is again necessary to eliminate all 
one- and two-bond segments. The contribution of all one-bond segments is 

The corresponding contribution of all two-bond segments is 
0 ) - I (  hh::ik 1 1 

o -1 1 - a 2  hrke2ik 

X D(a1, h:,  h!k)D(a2, h i ,  h L k )  da1 da2 dh: dh!, dh; dh'k. (8.20) 

(6) Finally, and as usual, 
m 

G(k, w )  = 1'"'. 
n = l  

(8.21) 

9. Discussion 

As yet no attempt has been made to perform a numerical calculation of the response 
of a dilute chain by real space decimation methods: they are far more difficult to use 
than the direct method of configurational averaging of Stinchcombe and Harris (1983) 
and Maggs and Stinchcombe (1984). However, there is the possibility of applying 
these methods to systems for which configurational averaging is too difficult to perform. 
An example would be a Sierpinski gasket with random bond strengths. This would 
be of interest because distributing bond strengths at random would remove many of 
the pathologies in the spectrum, and might be expected to provide a better model of 
the dynamics of random clusters than the regular gasket. 

For such a randomised fractal there are three ways in which the calculation of the 
response could be carried out. 

(i)  The most simple-minded way would be to generate a large system at random 
and then solve for the response of the system recursively by storing the renormalised 
parameters associated with each site after each iteration. While this is not a very 
sophisticated technique there are considerable time advantages in comparison with 
standard numerical packages. The recursive method gives the response of an N site 
system in a time which increases as only N log N. The calculation of the inverse of 
a large matrix usually takes a time proportional to N 3 .  

(ii) A method which would be more difficult to implement would be to derive the 
equations for the evolution of the distributions analytically, as was done above for the 
chain, and then to follow the evolution of the distributions numerically. 

(iii) A method intermediate in complexity between these first two methods is to 
generate a large system at random and then scale the system once numerically. It 
should then be possible to extract an approximation to the renormalised coupling 
distributions and to use this distribution to generate another large random system. 
Iteration of this method would then overcome the finite-size effects inherent in the 
first method. A similar method was used by Aoki (1980) in a study of the localisation 
of electrons in a two-dimensional Anderson model. 
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10. Conclusion 

To calculate the functional form of the dynamic structure factor we have generalised 
a method first applied to the density of states by Tremblay and Southern (1983) by 
introducing a transverse field into the equations of motion of the spin operators. This 
method allowed us to calculate the response function of a number of systems including 
a pure chain, the sidechain model and a Sierpinski gasket. The result for the Sierpinski 
gasket did not have the simple dynamic scaling form discussed in 9 1 because the 
lattice only has a discrete scale invariance; rather the response (in the limit of small 
k and w )  turns out to be a periodic function of log, lkl and also has a strong angular 
dependence. 

We have tried to produce systematically improvable approximations to the Green 
functions on dilute lattices at arbitrary site and bond concentrations. This has been 
difficult to accomplish for reasons described in detail in 0 7.  It would be of great 
interest to find what analytic properties of a recursion formula must be preserved in 
order to ensure a positive definite dynamic structure factor: an apparently minor change 
to an exact recursion formula can have drastic results on the response. 

By following the distributions which arise in random systems it is possible, in 
principle, to find the exact response. However, it is not yet clear that this approach 
is feasible because the evolution of a multi-dimensional distribution is far more difficult 
to treat numerically than the simple parameter scaling which has been considered so 
far. The method will probably only be applicable to hierarchical or fractal models in 
which the bond strengths are randomised; for such models it is possible to guarantee 
that the interactions always remain short-ranged. For a random Euclidean lattice, even 
though the bond strengths fall off rapidly with distance (Maggs 1985, Maggs and 
Stinchcombe 1986), the correlations in the bonds will be impossible to treat with 
reasonable computer storage. 
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